Sustainability and Bioenergy

Henry Bastian Office of Wildland Fire Coordination, Department of the Interior Chair of the Woody Biomass Utilization Group February 2010

Dimensions of Sustainability

Economic

- Markets (supply, demand, price)
- Trade

- Environmental

- Direct & Indirect effects
- Ecosystem services
- Social
 - Regional, National, and International
 - Food, Fuel, Feed and Fiber

Example Sustainability Criteria

Environmental

- Conserve Carbon
- Conserve Biodiversity
- Sustainable water
- Soil Conservation
- Air Quality

Social

- Worker's rights
- Land rights
- Food security and availability
- Share benefit locally

"the right crops and trees in the right place with the right techniques"

World Wildlife Foundation

Not all biofuels are the same!

- Grain-based (food, feed)
- Sugar-based (food)
- Oil plant (food, oilseeds)
- Cellulosic (herbacious energy crops)
- Cellulosic (woody energy crops)
- Waste recycling (tallow, grease)
- Residues (crop, forest, urban wood diversion from landfills)

Not all Biofuels Production is the Same!

Feedstock

- Forest Residues
- Hazardous Fuel Treatments
- Short Rotation Woody Crops
- Wood Waste
- Conventional
- Forestry
- Mill Wastes & Residues

Conversion

- Manufacturing
- Co-firing
- Combustion
- Gasification
- Hydrolysis
- Digestion
- Pyrolysis
- Extraction
- Separation

Uses

Fuels:

- Ethanol
- Other Liquid Fuels
- Hydrogen

Electricity and Heat

Biobased Products

- Composites
- Specialty Products
- New Products
- Chemicals
- Traditional Products

Biofuels that make sense...

- Use material that have negative environmental consequences
 - Reduces wildfire, improves forest health/habitats, and protects watersheds.
- Produced on marginal lands with minimal inputs
 - Water, fertilizer, and low impact harvesting
- Production is scaled to match feedstock availability and provide value in maintaining landscapes
- Have favorable net energy and net GHG profiles

Benefits to Air Quality cents per kwh

Relative benefit of biomass use vs. open burning NREL Study (Gregg Morris)

□ Nox & SOx = 0.14¢

■ PM-10 = 0.71¢

□ CO = 0.15¢

Methane = 7.52¢

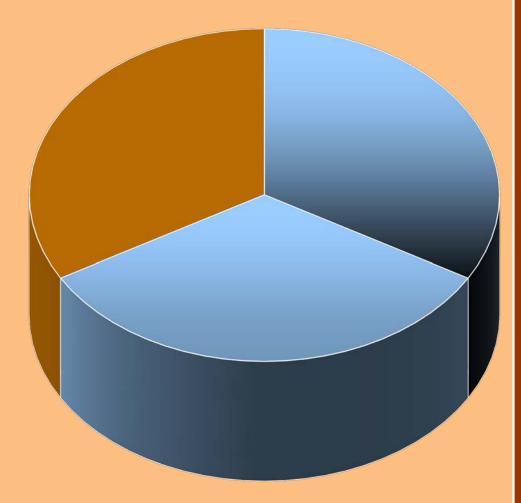
■ Non-Methane HCs = 1.1¢

□ CO2 = -0.23¢

Total = 9.39¢ / kwh

Societal Benefits

• 4-5 Rural Jobs per MW


(WGA Report)

• Protection or maintenance of scenic values and recreation opportunities

Rural Jobs
Recreation/Scenic
Public Health
Lost Productivity

- Respiratory impacts
- Smoke & fire related safety, injuries, or mortality
- Facility, traffic, and fire closures
- School or business closures

Benefits of Converting Waste to Energy

Landfill Diversion

Reduced need for compaction Increased recycling capacity Avoided sitting, permitting

□ Energy Security

Energy Credits Foreign debt and trade National and economic security

Grid Stability

Load centered, off-grid Line voltage support 24/7 energy capacity

Forest Health Benefits

Forest Health

Wood and biomass value (Eagle Lake RD = \$267/acre) Increased fiber yield and value Reduced insects and disease Fire Prevention Avoided Wildfires = \$856/acre

Public & Private Property Values Avoided Rehab Costs

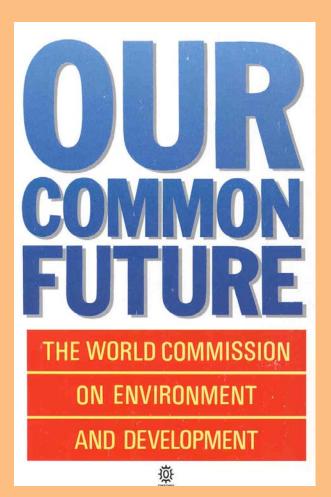
Wildlife Enhancement

Protect snags & downed logs Improved fish and wildlife habitat

Watershed Protection

Avoided sediment delivery (Hayman Fire = \$268/acre) Increased water quality, yields and timing

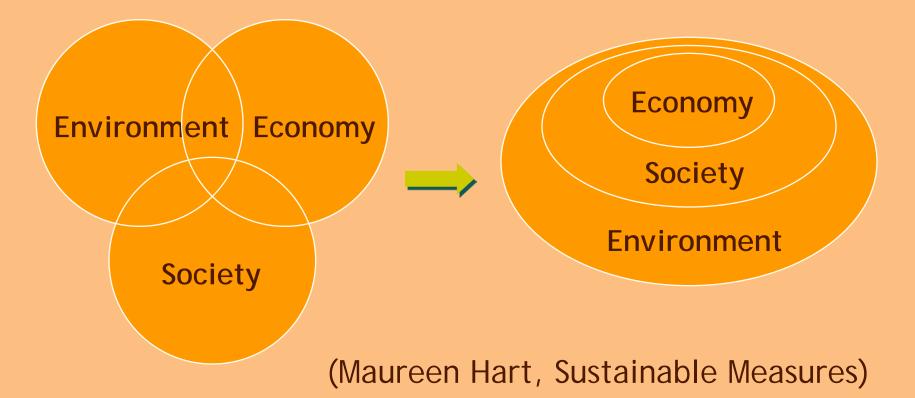
Range Improvement Improved Rangelands and Forage


Fundamental Concepts

- Intergenerational...is present and future oriented
- "Triple bottomline"...integrates environmental, social, and economic concerns and outcomes
- Place-based...connects actions within and across geographical and political levels or scales

Sustainability

Present and Future Oriented



"...the capacity to meet the needs of the present without compromising the ability of future generations to meet their own needs"

(Brundtland Commission, 1987)

"Triple Bottom-Line"

Interconnected and integrated

Policy

National

- Energy Policy
- Climate Change Policy
- Forestry Policy including new Farm Bill Incentives
- Regional
 - Western Climate Initiative
 - Western Governor's Task Forces- Bioenergy and Forestry
- State
 - State Renewable Energy Goals
 - State Climate Change Goals
 - State Bioenergy Strategies
- Local collaborative efforts
 - Implementing Community Wildfire Protection Plans
 - Accomplishing forest restoration goals

Public policy toward sustainability

- State Renewable Portfolio Standards for electrical energy
- State Climate Action Plans
- National Renewable Fuels Goals
- Community Planning- sustainable development
 - Landfills
 - District Heating
 - Sewage Treatment
 - Conserving natural areas
 - Sustainable business operations

Closing Thoughts

- Policies are moving quickly (energy and climate).
- Sustainable forestry principles applied equally to practices
- Biomass standard and definitions (saw logs/pulp wood)
- Restoration and sustainable forest management principles (bioenergy and ecosystem services)
- Organization of "biomass market"
- Competition between uses of biomass (energy / pulpwood markets).