Figure 1. Current and potential wood supply for biomass energy

Source: Perlack et al. 2005. Biomass as Feedstock for a Bioenergy and Bioproducts Industry.

Figure 2. Availability of Biomass in the U.S.

Figure 3. Biomass utilization in electric power and biofuels production, under both a 25 % RFS and 25 % RES, by 2025

[Millions of dry tons]

	2007	2025/1		
	Actual	25% RES/2	25% RFS/3	Total
Agricultural residues			127	127
Urban wood waste	8	25	4	29
Forest residues	47	120	42	162
Energy crops		71	102	173
Subtotal:	55	216	275	491
Wood	35	329	50	379
Total	90	545	325	870

^{1/} Energy Information Administration, 2007

^{2/495} billion KWh = 545 million bdT of biomass (assumptions: 2.2 gT=1000 KWh, 1.1 bdT=1000 KWh)

^{3/28} billion gallons ethanol = 325 million bdT of biomass (assumptions: 1 gT=43 gal, 1 bdT=86 gal)

Figure 4. Projected Renewable Electricity Sources to 2020, with 20% RPS

Figure 5. Electricity Generation from Biomass with 20% RES

Figure 6. Projected shortfall in achieving biofuels goals, 2022

Source: EIA Annual Energy Outlook 2009

Figure 7. Projections of Biomass-Fired Generating Capacity in Four Cases, 2000-2020

Source: EIA, 2003. Biomass for Electricity Generation

Figure 8. Relative efficiency of electricity, thermal, and cogeneration (CHP) facilities

	Size	Wood use	Capital cost	Operations cost	Efficiency	
	(MW)	(Green tons/yr)	(US\$millions)	(US\$millions	(Percent)	
Electricity only						
Utility plant	10-75	100,000-800,000	20-150	2-25	18-24	
Industrial plant	2-25	10,000-150,000	4-50	4-50	20-25	
School campus	N/A	N/A	N/A	N/A	N/A	
Commercial/industrial	N/A	N/A	N/A	N/A	N/A	
Thermal only						
Utility plant	14.6-29.3	20,000-40,000	10-20	2-4	50-70	
Industrial plant	1.5-22.0	5,000-60,000	1.5-10	1-3	50-70	
School campus	1.5-17.6	2,000-20,000	1.5-8	0.15-3	55-75	
Commercial/industrial	0.3-5.9	200-20,000	0.25-4	0.02-2	55-75	
Combined heat and power/1						
Utility plant	25(73)	275,000	50	5-10	60-80	
Industrial plant	0.2-7(2.9-4.4)	10,000-100,000	5-25	0.5-3	60-80	
School campus	0.5-1(2.9-4.4)	5,000-10,000	5-7.5	0.5-2	65-75	
Commercial/industrial	0.5-2(2.9-7.3)	5,000	5	0.5-2	65-75	

 Sizes for combined-heat-and-power (CHP) facilities are a combination of electical and thermal capacity; the first figure is electrical and the figure in parentheses is thermal.
MW = 3.413 Btu/hour.

Source: USDA Forest Service. 2004. Techline: Wood Biomass for Energy WOE-1. Forest Products Laboratory, Madison, Wisconsin.

Next steps

- Regional biomass energy action plans (w/BERC, regional partner orgs.)
- Biomass harvesting guidelines & procurement standards (w/NASF, FSC/SFI, et al.)
- Spatial decision support tools (w/FS, CBI)
- Thermal/efficiency std. meet 25x'25 through efficient utilization, sustainable management of forest resources, and maintenance of key conservation values

www.pinchot.org/bioenergy_paper.html

Pinchot Institute for Conservation 1616 P Street NW Washington, DC 20036 202 797-6580 www.pinchot.org

